Prader Willi Syndrome
*** An uncommon disorder that can effect the lymphatics and there are a number of reported cases of Prader Willi patients with severe leg lymphedema.**
History
Prader-Willi Syndrome first appeared in the medical literature when endocrinologists Prader, Labhart, and Willi published a report describing an unusual pattern of abnormalities. These abnormalities included diminished fetal activity, profound poor muscle tone, feeding problems in infancy, underdeveloped not allowed organs, short stature and retarded bone age, small hands and feet, delayed developmental milestones, characteristic faces, cognitive impairment, onset of gross obesity in early childhood due to insatiable hunger, and a tendency to develop diabetes in adolescence and adulthood when weight was not controlled. Further studies in the late 1960’s followed up on these cases, and added more. Orthopedic, dental and developmental characteristics that could assist in differential diagnosis of PWS were identified, and two clearly identifiable phases of the disorder were described (Phase I, the prenatal, neonatal, and early infancy period, in which the child shows diminished fetal activity, poor muscle tone, and failure to thrive after birth, and Phase II, in which the uncontrollable hunger drive emerges between ages 2 and 3).. Behavioral, personality and medical problems associated with PWS were described in literature in the 1970’s and 80’s. A study published by Greenswag in 1987of 232 individuals with PWS, age 16 and over, indicated that with appropriate nutritional control, the life expectancy of this population could be extended. The study also showed that emotional liability increases with age and is independent of the presence of adult obesity, that psychosocial adaptation to adulthood requires special management, and that the presence of PWS has a profound impact on family life.
The Genetics of Prader-Willi Syndrome:
An Explanation for the Rest of Us
Chromosome 15
Originally published in PWSA’s The Gathered View by Linda Keder, former editor, March-May 2000. Revised and updated in July 2004 with the assistance of Merlin G. Butler, M.D. Ph.D., Chair, PWSA-USA Scientific Advisory Board.)
When the medical world first learned about Prader-Willi syndrome in 1956, doctors had no idea what caused people to have this collection of features and problems that we now know as PWS. In 1981, Dr. David Ledbetter and his colleagues reported a first breakthrough discovery: Many people with PWS that they studied had the same segment of genes missing from one of their chromosomes. They had discovered the deletion on chromosome 15 that accounts for about 70 percent of the cases of PWS. Since then, researchers have made a series of other important discoveries about the genes involved in Prader-Willi syndrome. Thanks to their perseverance, we now know much more about the several genetic forms of this complex disorder, and we have genetic tests that can confirm nearly every case.
Originally published in PWSA’s The Gathered View by Linda Keder, former editor, March-May 2000. Revised and updated in July 2004 with the assistance of Merlin G. Butler, M.D. Ph.D., Chair, PWSA-USA Scientific Advisory Board.)
When the medical world first learned about Prader-Willi syndrome in 1956, doctors had no idea what caused people to have this collection of features and problems that we now know as PWS. In 1981, Dr. David Ledbetter and his colleagues reported a first breakthrough discovery: Many people with PWS that they studied had the same segment of genes missing from one of their chromosomes. They had discovered the deletion on chromosome 15 that accounts for about 70 percent of the cases of PWS. Since then, researchers have made a series of other important discoveries about the genes involved in Prader-Willi syndrome. Thanks to their perseverance, we now know much more about the several genetic forms of this complex disorder, and we have genetic tests that can confirm nearly every case.
Chromosomes and Genes: The Basics
To understand the genetics of PWS, it helps to have a basic understanding of chromosomes and genes. Chromosomes are tiny structures that are present in nearly every cell of our bodies. They are the packages of genes we inherit from our parents. Genes contain all the detailed instructions our bodies need to grow, develop, and function properly—our DNA. Specific genes direct our cells to produce proteins, enzymes, and other essential substances. Each of our many genes is located on a specific chromosome. Most of our body’s cells contain 46 chromosomes—23 inherited from our mother and 23 from our father. (Egg and sperm cells normally contain just 23 chromosomes, because those are the cells that join in conception and provide the baby the right number of chromosomes.) Twenty-two of the chromosome pairs are labeled with a number based on their size (chromosome 1 is the largest pair, and chromosome 22 is nearly the smallest), and the two chromosomes in each numbered pair contain the same genes (one set from mother and one from father). The changes that cause Prader-Willi syndrome occur on the pair known as chromosome 15. The 23rd chromosome pair is designated as the not allowed chromosome pair This pair determines the baby’s not allowed: XX for a girl, XY for a boy.
Changes or errors in genes and chromosomes are common in the formation of egg and sperm cells. Some of these genetic changes will have no effect when a baby is conceived; some will cause a miscarriage; and some, like those in Prader-Willi syndrome, will cause significant differences in how the baby develops and functions. While many genetic disorders are caused by a change in a single gene and can be passed down from parent to child, PWS is more complicated.
Some of the important genetic characteristics of PWS identified through research are:
More than one gene is involved in PWS, and these genes are near each other in a small area of what is called the “long arm” of chromosome 15—in a region labeled 15q11-q13. Scientists still don’t know exactly how many genes and which specific ones are involved.
The critical genes must come from the baby’s father in order to function properly; the mother’s genes in this area are “turned off” through a rare phenomenon called “genomic imprinting.”
There are at least three different chromosome errors that can keep these key genes from working normally, and all result in the child having Prader-Willi syndrome.
The two most common errors that cause PWS can occur in any conception—in other words, PWS is not usually an inherited condition; it just happens. In very rare cases, however, parents may have a 50-percent chance of having another child with PWS.
The Role of Genomic Imprinting
During the early 1980s, scientists puzzled over why some people who seemed to have PWS did not have the chromosome 15 deletion, and why some people with the chromosome 15 deletion seemed to have a different condition from PWS. Dr. Merlin Butler and colleagues began unraveling the puzzle when they reported in 1983 that the chromosome 15 deletion in PWS was on the father’s chromosome.
The next breakthrough came in 1989, when Dr. Robert Nicholls and fellow researchers announced their discovery that PWS is an example of genetic or genomic imprinting, a process well known in plant genetics but not previously identified in humans. This means that some of our genes have to come from a particular parent to work normally. These rare genes are said to be “imprinted,” or have the ability to be turned off or on, depending on which parent contributed the gene. In what scientists call the “Prader-Willi region” of chromosome 15 (the area where the deletion occurs), there are genes that must come from the baby’s father that are active, or “expressed,” in order to work. These genes are not active or expressed on the chromosome 15 inherited from the mother because the mother’s imprint turns them off. In Prader-Willi syndrome, these critical genes are either missing (deleted) from the father’s chromosome 15, functioning improperly because of an imprinting defect, or the entire chromosome 15 from the father is missing and both chromosome 15s come from the mother. (See The Three Genetic Forms of PWS for more detail on each of these errors.)
When a deletion of chromosome 15q11-q13 region is found on the mother’s chromosome 15, the result is an entirely different syndrome called Angelman syndrome (AS). That is because there is also one gene in the Prader-Willi region that is imprinted, or turned off, on the father’s chromosome 15; people who lack this gene from their mother have AS rather than PWS. This discovery explained the mysterious cases of people who had a chromosome 15 deletion but did not have the characteristics of PWS—their deletion was on the chromosome 15 that came from the mother. Because the genetic errors happen in the same section of chromosome 15, PWS and AS are sometimes called “sister” syndromes even though the disorders have few features in common.
The Three Genetic Forms of PWS
Although every case of Prader-Willi syndrome is due to the baby failing to receive active genes from a specific section of the father’s chromosome 15, there are three different ways that this can happen:
Paternal deletion — about 70% of all cases of PWS
In the most common form of PWS, part of the chromosome 15 inherited from the child’s father—the part containing the PWS critical genes—is missing. In some cases, the section that has disappeared (called a “deletion” or sometimes a “microdeletion”) is large enough to be identified with high resolution chromosome studies done with a microscope; in other cases, it is too small but it can be detected with another chromosome test called FISH (see Tests Used To Diagnose Prader-Willi Syndrome). Typical or common deletions are now classified as Class/Type 1 or Class/Type 2, based on the size of the deletion. Usually a deletion happens for no known reason, and it is not likely to happen again in another pregnancy (less than 1% chance of recurrence). There is nothing the father did (or did not do) to cause it and no way to prevent it.
Note: In rare cases of atypical deletions, imprinting defects (see below), or when a chromosome change such as a “translocation” caused the PWS genes to not function normally , the family could have another child with the same condition. (In a translocation, part of one chromosome is broken off and attached to a different chromosome.) It is especially important for these families to have further testing and genetic counseling.
Maternal uniparental disomy (UPD) — about 25% of cases
In this less common form of PWS, the baby inherits both copies of chromosome 15 from one parent—the mother. (Maternal means mother; uniparental means one parent; and disomy means two chromosome bodies). In these cases, the developing baby usually starts out with three copies of chromosome 15 (a condition called trisomy 15) because there was an extra chromosome 15 in the mother’s egg. Later, one of the three is lost—the chromosome 15 that came from the father’s sperm. The result has the same effect as a deletion. The child does not have active genes on chromosome 15 that must come from the father in order to be expressed (to function). Even though there are two complete copies of the mother’s chromosome 15, the key genes in the PWS region are imprinted, or turned off, in the mother’s copies. Because the error in this form of PWS starts with an extra chromosome in the mother’s egg, and older eggs are more likely to have errors of this type, older mothers are more likely than younger mothers to have a baby with this form of PWS. Even so, it is not likely to happen (and hasn’t yet) to a second child in the same family. When a baby inherits two identical chromosome 15s from the mother (isodisomy, or two copies of the same one rather than one of each of the mother’s own chromosomes), there is a chance of having additional genetic problems or conditions.
Imprinting defect — less than 5% of cases
In very rare cases, the PWS genes on the father’s chromosome are present but do not work because the imprinting process is faulty. The activity of the genes is controlled by a tiny imprinting center on chromosome 15 in the same area as the PWS critical genes. Normally, when genes are passed down to a child, the prior imprints are cleared away, and new imprints are made according to the not allowed of the parent. When there is a microdeletion or other defect in the imprinting control center, gene function on the father’s chromosome 15 may not be set to work normally. An imprinting defect can appear suddenly, or it can be present in the father’s chromosome that he received from his mother. If he received the defect from his mother, the father would not have PWS himself (because it’s on his maternal chromosome 15), but he could pass it on to his child (it would be the child’s paternal chromosome 15). There is a 50-50 chance that any child he has will receive the chromosome with the defect instead of the one that’s working correctly. Likewise, the father’s siblings could carry and pass on the mutation to their children. Further testing and genetic counseling are especially important for families who have a child with an imprinting defect.
Which genetic tests should be done and in what order?
The approach to testing for PWS in any given case will depend on a number of considerations—what tests have already been done, what expertise and laboratories are available, whether both parents are available for blood samples, and so forth. Chromosome studies are typically done in any case, but the order of the other tests—and their results—will determine how many need to be done. In 1996, two national genetics groups worked together to develop guidelines on testing for Prader-Willi and Angelman syndromes. Their recommendations have been published and are available on the Internet at www.faseb.org/genetics/acmg/pol-22htm. In most cases, they recommend continued testing until the genetic cause of PWS is known.
Some testing scenarios:
If an experienced diagnostician suspects Prader-Willi syndrome in an older child or adult who meets the Diagnostic Criteria for PWS, the FISH test might be the first test of choice because it is widely available and will detect the majority of cases of PWS. If the FISH test is positive (a deletion is found), the diagnosis of PWS is confirmed and no further testing is needed. If the FISH test comes back negative (detecting no deletion), the next step would be the DNA methylation test. A relatively new test, DNA methylation can diagnose more than 99 percent of people with PWS, but it does not tell whether the cause of PWS is deletion, uniparental disomy (UPD), or an imprinting defect. If, after the negative FISH test, the methylation test confirms that the person has PWS, more testing is needed to find out whether the cause is UPD or an imprinting defect. If the UPD test is negative in this case, the cause must be an imprinting defect. At this time, imprinting defects are diagnosed by process of elimination—positive methylation test, but negative FISH and UPD tests--However, to confirm a suspected defect may require testing in genetics laboratories specializing in PWS research.
In cases where the suspicion of PWS is not as strong, or where the diagnosing physician is not as familiar with PWS, the DNA methylation test might be the best place to start. The test is becoming more widely available and can confirm or rule out PWS at the first step. If the methylation test is positive, then additional testing can be done at the same lab to determine the specific form of PWS. Even experienced diagnosticians have sometimes misdiagnosed infants as having PWS when in fact they had Angelman syndrome. (Both syndromes can cause hypotonia in the newborn baby, and both will show a chromosome 15 deletion on the FISH test.) Starting with the methylation test avoids this problem.
In cases of an imprinting defect or other rare test findings, families may need further testing through a research laboratory, both to get an accurate diagnosis and to learn about their risks of having another child with PWS.
What about prenatal testing?
Prenatal testing for PWS is now available. An expectant family might wonder whether to have testing done if they have had a child with PWS previously. Although the risk of having a second baby with PWS is very low in most cases, prenatal testing can provide important reassurance to the family that the new baby will not be affected. Counseling by a genetics professional can help a family understand their specific risks and whether testing of the fetus is important in their situation.
Prenatal testing for PWS might also be done in cases where a genetic study of the fetus (through chorionic villus sampling—CVS—or amniocentesis) shows abnormalities that raise suspicion of PWS. In one case, for example, a routine chromosome test done through CVS early in a woman’s pregnancy found that some of the baby’s cells had three chromosome 15s (called mosaic trisomy 15). This led the doctor to order a molecular test for maternal uniparental disomy (UPD) in the remaining cells. The test results showed that the baby would have PWS due to UPD.
Who should do the testing?
Families who are seeking a diagnosis or who have concerns about their risks should work with a genetics specialist who is knowledgeable about PWS and the latest in testing. The geneticist will arrange to have blood samples sent to an appropriate laboratory for testing.
There is available on the Internet a free, searchable database of genetics laboratories and the tests they offer for specific conditions such as PWS. GeneTests Laboratory Directory (formerly called Helix) is sponsored by the Children’s Health Care System, Seattle, Washington, and can be found on the Internet at www.genetests.org . Note, however, that not every laboratory that performs these tests is included in the database.
Those who need help in locating a geneticist or a testing center may contact the PWSA (USA) national office at 1-800-926-4797 or through its Website, www.pwsausa.org .
References
ASHG/ACMG Report. Diagnostic Testing for Prader-Willi and Angelman Syndromes: Report of the ASHG/ACMG Test and Technology Transfer Committee. American Journal of Human Genetics 58:1085-1088.
www.faseb.org/genetics/acmg/pol-22htm
Cassidy, S.B. and Schwartz, S. (1998) Prader-Willi and Angelman Syndromes: Disorders of Genomic Imprinting. Medicine 77: 140-151.
Butler, M.G. and Thompson, T. (2000) Prader-Willi Syndrome: Clinical and Genetic Findings. The Endocrinologist 10 (4) Suppl 1:3S-16S.
Cassidy, S.B. (1998) Prader-Willi Syndrome. GeneClinics. http://www.geneclinics.org/profiles/pws/
The author wishes to thank Drs. Suzanne Cassidy, Dan Driscoll, and David Ledbetter for editing the original article, and Dr. Merlin Butler for assisting with this latest revision, so that families and other non-geneticists might better understand this complex and evolving subject.
What is Prader-Willi Syndrome?
A disorder of chromosome 15
Prevalence: 1:12,000- 15,000 (both sexes, all races)
Major characteristics: hypotonia, hypogonadism, hyperphagia, cognitive impairment, difficult behaviors
Major medical concern: morbid obesity
Cause and Diagnosis of PWS
The genetic cause is loss of yet unidentified genes normally contributed
by the father. Occurs from three main genetic errors: Approximately 70%
of cases have a non-inherited deletion in the paternally contributed
chromosome 15; approximately 25% have maternal uniparental disomy
(UPD)—two maternal 15s and no paternal chromosome 15; and 2–5 %
have an error in the "imprinting" process that renders the paternal
contribution nonfunctional.
Diagnostic testing: Individuals who have a number of the clinical
findings should be referred for genetic testing. DNA methylation
analysis confirms diagnosis of PWS. FISH and DNA techniques can identify
the specific genetic cause and associated recurrence risk. (See ASHG/ACMG
Report, Am J Hum Genet 58: 1085, 1996.) Patients who had negative
or inconclusive tests with older techniques should be retested.
Recurrence risk: Significant only for rare cases with imprinting
mutations, translocations, or inversions. All families should receive
genetic counseling.
Major Clinical Findings
The following common characteristics of individuals with PWS raise suspicion of the diagnosis. Published diagnostic criteria include supportive findings and a scoring system (Holm et al, Pediatrics 91, 2, 1993).
Neonatal and infantile central hypotonia, improving with age
Feeding problems and poor weight gain in infancy
Excessive or rapid weight gain between 1 and 6 years of age; central obesity in the absence of intervention
Distinctive facial features—dolichocephaly in infants, narrow face/bifrontal diameter, almond-shaped eyes, small-appearing mouth with thin upper lip and down-turned corners of mouth
Hypogonadism—genital hypoplasia, including undescended testes
and small penis in males; delayed or incomplete gonadal maturation
and delayed pubertal signs after age 16, including scant or no
menses in women
Global developmental delay before age 6; mild to moderate mental
retardation or learning problems in older children
Hyperphagia/food foraging/obsession with food
Minor Clinical Findings:
Decreased fetal movement, infantile lethargy, weak cry
Characteristic behavior problems—temper tantrums, violent outbursts, obsessive/compulsive behavior; tendency to be argumentative, oppositional, rigid, manipulative, possessive, and stubborn; perseverating, stealing, lying
Sleep disturbance or sleep apnea
Short stature for genetic background by age 15
Hypopigmentation—fair skin and hair compared with family
Small hands and/or feet for height age
Narrow hands with straight ulnar border
Eye abnormalities (esotropia, myopia)
Thick, viscous saliva with crusting at corners of the mouth
Speech articulation defects
Skin picking
Weight and Behavior
Appetite Disorder
Hypothalamic dysfunction is thought to be the cause of the disordered appetite/satiety function characteristic of PWS. Compulsive eating and obsession with food usually begin before age 6. The urge to eat is physiological and overwhelming; it is difficult to control and requires constant vigilance.
Weight Management Challenge
Compounding the pressure of excessive appetite is a decreased calorie utilization in those with PWS (typically 1,000-1,200 kcal per day for adults), due to low muscle mass and inactivity. A balanced, low-calorie diet with vitamin and calcium supplementation is recommended. Regular weigh-ins and periodic diet review are needed. The best meal and snack plan is one the family or caregiver is able to apply routinely and consistently. Weight control depends on external food restriction and may require locking the kitchen and food storage areas. Daily exercise (at least 30 minutes) also is essential for weight control and health.
To date, no medication or surgical intervention has been found that would eliminate the need for strict dieting and supervision around food. GH treatment, because it increases muscle mass and function, may allow a higher daily calorie level.
Behavior Issues
Infants and young children with PWS are typically happy and loving, and exhibit few behavior problems. Most older children and adults with PWS, however, do have difficulties with behavior regulation, manifested as difficulties with transitions and unanticipated changes. Onset of behavioral symptoms usually coincides with onset of hyperphagia (although not all problem behaviors are food-related), and difficulties peak in adolescence or early adulthood. Daily routines and structure, firm rules and limits, "time out," and positive rewards work best for behavior management. Psychotropic medications—particularly serotonin reuptake inhibitors, such as fluoxetine and sertroline—are beneficial in treating obsessive-compulsive (OCD) symptoms, perseveration, and mood swings. Depression in adults is not uncommon. Psychotic episodes occur rarely.
Developmental Concerns
Motor Skills
Motor milestones are typically delayed one to two years; although hypotonia improves, deficits in strength, coordination, balance, and motor planning may continue. Physical and occupational therapies help promote skill development and proper function. Foot orthoses may be needed. Growth hormone treatment, by increasing muscle mass, may improve motor skills. Exercise and sports activities should be encouraged and adaptations made, as needed. Proficiency with jigsaw puzzles is frequently reported, reflecting strong visual-perceptual skills.
Oral Motor and Speech
Hypotonia may create feeding problems, poor oral-motor skills, and delayed speech. The need for speech therapy should be assessed in infancy. Sign language and picture communication boards can be used to reduce frustration and aid communication. Products to increase saliva may help articulation problems. Social skills training can improve pragmatic language use. Even with delays, verbal ability often becomes an area of strength for children with PWS. In rare cases, speech is severely affected.
Cognition
IQs range from 40 to 105, with an average of 70. Those with normal IQs typically have learning disabilities. Problem areas may include attention, short-term auditory memory, and abstract thinking. Common strengths include long-term memory, reading ability, and receptive language. Early infant stimulation should be encouraged and the need for special education services and supports assessed in preschool and beyond.
Growth
Failure to thrive in infancy may necessitate tube feeding. Infants should be closely monitored for adequate calorie intake and appropriate weight gain. Growth hormone is typically deficient, causing short stature, lack of pubertal growth spurt, and a high body fat ratio, even in those with normal weight. The need for GH therapy should be assessed in both children and adults.
Sexual Development
not allowed hormone levels (testosterone and estrogen) are typically low. Cryptorchidism in male infants may require surgery. Both sexes have good response to treatment for hormone deficiencies, although side effects have been reported. Early pubic hair is common, but puberty is usually late in onset and incomplete.
Although it is often assumed that individuals with PWS are infertile, several pregnancies have been confirmed. Sexually active individuals should be counseled regarding risk of pregnancy and of genetic error in offspring (50%, except for those with PWS due to UPD). Basic not allowed education is important in all cases to promote good health and protect against abuse
Other Common Concerns
Strabismus—esotropia is common; requires early intervention, possibly surgery
Scoliosis—can occur unusually early; may be difficult to detect without X-ray; curve may progress with GH treatment. Kyphosis is also common in teens and adults
Osteoporosis—can occur much earlier than usual and may cause fractures; ensure adequate calcium, vitamin D, and weight-bearing exercise; bone density test recommended
Diabetes mellitus, type II—secondary to obesity; responds well to weight loss; screen obese patients regularly
Other obesity-related problems—include hypoventilation, hypertension, right-sided heart failure, stasis ulcers, cellulitis, and skin problems in fat folds
Sleep disturbances—hypoventilation and desaturation during sleep are common, as is daytime sleepiness; sleep apnea may develop with or without obesity; sleep studies may be needed
Nighttime enuresis—common at all ages; desmopressin acetate should be used in lower than normal doses
Skin picking—a common, sometimes severe habit; usually in response to an existing lesion or itch on face, arms, legs, or rectum. Best managed by ignoring behavior, treating and bandaging sores, and providing substitute activities for the hands.
Dental problems—may include soft tooth enamel, thick sticky saliva, poor oral hygiene, teeth grinding, and infrequently rumination. Special toothbrushes can improve hygiene. Products to increase saliva flow are helpful.
Quality of Life Issues
General health is usually good in individuals with PWS. If weight is controlled, life expectancy may be normal, and the individual’s health and functioning can be maximized.
The constant need for food restriction and behavior management may be stressful for family members. PWSA (USA) can provide information and support. Family counseling may also be needed.
Adolescents and adults with PWS can function well in group and supported living programs, if the necessary diet control and structured environment are provided. Employment in sheltered workshops and other highly structured and supervised settings is successful for many. Residential and vocational providers must be fully informed regarding management of PWS.
Resources for Health Care Providers
"Health Care Guidelines for Individuals with PWS" and the book Management of Prader-Willi Syndrome are available from PWSA (USA), as are other publications for professionals and parents.
For a more comprehensive medical description of PWS, see the University of Washington School of Medicine, Seattle, GeneClinics: Medical Genetics Knowledge Base
"Health Care Guidelines for Individuals with PWS"
http://www.pwsausa.org/postion/HCGuide/HCG.htm
and the book
Management of Prader-Willi Syndrome
http://www.pwsausa.org/merchand/mgmtPWS.htm
are available from PWSA (USA), as are other publications for professionals and parents.
For a more comprehensive medical description of PWS, see the University of Washington School of Medicine, Seattle,
GeneClinics: Medical Genetics Knowledge Base
http://www.geneclinics.org/profiles/pws/
This information is from the Prader Willi Syndrome Association
http://www.pwsausa.org/index.html
Please visit and support their association and endeavors
.............
Pat O'Connor
Lymphedema People
http://www.lymphedemapeople.com