Increased hyaluronan expression at distinct time points in a

lymphatic mapping, Fluorescence lymphography, lymphatic alterations, lymphatic vessel abnormalities, clinical trials, lymphatic capillary regeneration, orbital lymphatics, lymph fluid physiology, lymph fluid, cutaneous periarteritis nodosa, lymph detox, Lymphatic Vessel Hyperplasia, puffy hand syndrome, lymphatic valves, lymph flow, lymphedema roadshow, Thoracic lymphatics, Abdominal Lymphatics

Moderators: Birdwatcher, jenjay, Cassie, patoco, Senior Moderators

Increased hyaluronan expression at distinct time points in a

Postby patoco » Sat Dec 15, 2012 1:09 pm

Increased hyaluronan expression at distinct time points in acute lymphedema.

Roberts MA, Mendez U, Gilbert RJ, Keim AP, Goldman J.


Biomedical Engineering Department, Michigan Technological University, Houghton, Michigan 49931, USA.


Lymphatic dysfunction in lymphedema results in chronic accumulation of interstitial fluid and life-long tissue swelling. In the absence of restored lymphatic drainage via adequate lymphangiogenesis, the interstitial environment can remodel in ways that decrease the elevated interstitial stress. Presently, relatively little is known about the glycosaminoglycans (GAGs) that become upregulated in the interstitium during lymphedema. We employed a mouse tail model of acute lymphedema that reproduces important features of the chronic human condition to establish a relationship between hyaluronan (HA) and sulfated GAG concentration with tissue swelling. We found that HA was upregulated by tissue injury at day 5 and became upregulated again by skin swelling (HA content increasing by 27% relative to controls at days 15 and 20). Surprisingly, the second phase of HA expression was associated with the declining phase of the tail skin swelling (tail diameter significantly decreasing by 17% from day 10 peak to day 20), demonstrating that HA is upregulated by tissue swelling and may help to counteract the edema in the mouse tail. This finding was confirmed by intradermal injection of an HA degrading enzyme (hyaluronidase) to the swollen tail, which was found to worsen the tail swelling. Sulfated GAGs, including chondroitin sulfate (CS), were not regulated by tissue swelling. The results demonstrate that HA, but not sulfated GAGs, is upregulated in the interstitium by acute tissue swelling. We speculate that HA expression during lymphedema may be part of a natural adaptive mechanism of the interstitial environment to reduce capillary filtration and increase interstitial fluid outflow following lymphatic obstruction and fluid accumulation.


User avatar
Site Admin
Posts: 2175
Joined: Thu Jun 08, 2006 9:07 pm

Return to Lymphedema Articles

Who is online

Users browsing this forum: No registered users and 6 guests